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Abstract

Applicat ions are described of two estimat Ion techniques to obta in final

deflections aid response t imes of plane rectangular frames sublected to iii-

pu.tsive loading on the transverse (beam ) men~ er. Deflections up to roughly

one third the span (thirty thicknesses) are estimated by the mode approxima-
• tion and deflection bounds techniques , treating the plastic rate dependence

by means of homogeneous viscous constitut ive equations. Co~q arisons are made

with recent test results, and the degree of agreement is discussed in terms of

the known error sources of the two techniques .
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LAW~E VISCOPLASTIC DEFLECT IONS OF IMPULSIVELY LOADE D PLANE FRAME S

I. Introduction

The impulsively loaded plane frame considered here is assumed to exhibit

str ong plastic rate sensitivity and to reach large deflections. We shall des-

cr ibe applicat ions of the mode approxiaat io~ technique and of the deflection

bound method to this type of structure . Experiment s intended to check on these

methods have recently been made E l]. The comparison between predictions of the

est imation technique s and the test results is discussed in orde r to assess the

relative import ance of the intrinsic errors of the methods , and those due to

further idealizati ons and approximations made in their applic ation to this type

of structu re .

The two types of frame s considered are shown in Fig. 1. Type (a) in Fig.

la has a concen trated impulse applied to a small block at the midpoint of the

beam (transverse) member , while type (b) in Fig. lb has a distribut ed impulse

applied over this member. These loads are idealized as impulsive (zero duration) ,

impart ing specified initial velocities with negligible initial displacements .

Symmetric deformations are expected , the main displacement magnitude being the

displacement at the midpoint C of the beam member. At lar ge deflections such

as indicated in Fig. 2b , a finite lateral displacement occurs at the top B of

each column . The particular frames studied here and in the related tests had

lengths L1 = 5.625 in. in the case of the “type (a )” frames , L1 6.00 in. for

the type (b) frame s , with 8.00 in. in both cases . Two strongly rate-

sensitive metals , mild steel. and commercially pure titan ium were used. In these

circumstances the large deflections have primari ly kinematic effects , without

• requirin g drastic changes in the stress field ; the resp onse remains primarily

fla*irel .
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2. Basic , cQncepts.~ and, Equations

The essential concepts of the, two techniques wiU~~e out~Jned brLefJ~.y. Fur-

ther ’ infor mation on the approaches may be found for the bound method In E2 , 3)

and for the extended mode apn roximat ion technique in [3 , 4).

The deflection bound method for a gtruct ure of vtscoulastic material, sub-

jected to impulsive pressures at t ~ 0 and thereafter unloaded, reauires the

solution for quasi-static deflections due to a certain concentrated force P~~ :

if the deflection is sought at point A of the structure (located by appr’opr-

late coordinates xA ) in dlrecti on~ n (a unit vector ) , P~~ is applied at

this point and in this direction. If the force P~~ is such that it does work

at least enual to the specified~ initial kinetic energy of the structure, then

the displacement on which it does work is an upper bound on the same deflection

quaitity in the resvonse to the given dynamic loading. If tf is the. time at

which the plastic deformation is completed , the theorem requires the work of the

force P~~ to be done in t ime tf • ( For a time-dependent material the work to

reach specified final strains depends on the t ime in which they are reached.)

In mathematical terms the bound theorem states that

f Sf
~ (1.)

where u~~ is the final displacement at point A in direction n of the dy-

namically loade d structure , reached at time tf ~ and u~~ the displacement at

time t f due to the stat ic force P~~ ; the inequality holds provided

(lb).

where I( is the initial kinetic energy of the impulsively loaded stru cture

and the right-hand side represents the work done by the force P~~ in the in-

terval of time 0 ~ t ( tf ; *(q~
t’) denotes work per unit volume written as 
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function of the terminal generalized strains , j = i, . .~r , for general-

ized strain and stress states havin g r con,onents .

:~ As noted above , this work depends on the interval tf. . Generally it

also depends on the path , i .e . ,  on the sequence of strain states from the in-

itial to the terminal. We have eliminated path dependefl by using concepts

of minimum work nàths (2 , 3), * denoting the work per unit volume which is

a minimum for given terminal strain . The total work is evaluated as

j *dv - fl ~~ t fj,~~(o
1
f )dV ‘

~~ 
(ic)

where ~(Q~~) is a homogeneous function of terminal stresses , whose de-

gree of homogeneity is n + 1. More generally, the function V funiishes con-

stitutive .quetions relating stress to strain rate states in a convenient form,

from the property

~~~ 

=
~~~~~~

. (2)

where qj are strain rate components.

The “intrinsic error” of the deflection bound is pos itive: an upper bound

is obtained. In this stat ement the comparison is made between a computed quasi-

static deflection according to a certain mathematical model, and a deflection

resulting from impulsive loading on the structure represented by the same model.

When comparison is made instead with the final deflection of an actual structure

as opposed to a mathematical model, the idealizations and approximations adopted

in the calculation of u~~ may introduce further errore . Some of the ideali-

zations are indicated above; they will be discussed with others more fully in

a later section. ObviouSly the aim is to make the calculation in such a way
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that the incidental errors are minor compared to the int rin sic ones • The need

for comparisons with experiments rather than merely with computer outputs is

• also obvious.

The essential concept of the mode technique is that of obtaining an ap-

• proxitnation to the actual response from a simpler solution which sat isfies all

• the field equations (dynamics , k inematics includin g boundary fixing conditions,

and coustitutive equations), but dis~grees in general with the imposed initial

velocities. Such simpler solutions can be foun d under certain conditi ons in

modal form, with velocity field , for example , written as

~~(x,t) = T(t)$1
(x) (3)

• where I = 1 2~ 3 ; T(t) is a scaler function of time t; and •1(x) is a

vector-valued function of space coordinates x . The initial velocities

• 
~~(x,O) T+ i(x) (‘4 )

where 1 1(0), usually differ from the velocities specified at t = 0, namely

u7(x) (5)

since the shape functions $1(x) are properties of the structure • However

the initial magnitude T0 can be chosen optimally by taking (5)

g (6)

• 1 where p is the mass density and the integral is over the volume V of the

structure. This value of T min imizes the initial magnitude of the follow-

ing funct ional :

- £ (t )  A( %~s~(x 1t )  — ~~(x ,t)] 
~~ ~

{
P(U

i 
— 

~~~)( *~i~ 
— ~~) dV (7)
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It has been shown (6] for a wide class of material behavior of essentia lly

viscous type ( generalize d strain rates written as function s of generalized

stress ) that 8(t ) is a non-increasing function , and decreases whenever plastic

flow occurs and the two solutions do not have identical stresses or strain rates.

Thus the actual velocity field and that of the mode solution approach each othe r

in this sense . With T0 chosen according to Eq. (6) ,  the two solutions may

became identica l after a certain inte rval . The final major displacement com-

puted from the mode solution is therefore usually much closer to that of the

structure than the initial mode amplitude is to the corresponding given initial

velocity.

The final major’ deflection of the mode response ytil be greater or less

than that of the structure whose initial velocity is the apec~fied one , depend-

• Lug on whether the initial mode velocity field is more or less concentr at ed than
• the given velocity distribution . This int rinsic error evidently can be pasi-

tive or negative . Here again the “error ” refers to quantities computed using

a certain mathematical model to represent a str uctu re . The calculation of the

mode response involves idealizations and approximations, and when the re sults

are compared with deflectio ns and response times of a real struct ure d further

errors may appear ’. These will be discussed in a later section .

The mode method requires the integration of the equations of the structure ,

from the initial mode form velocity field to the end of the motion . This in-

tagration presents no difficulty if the equations allow the separated-vari able

form of Eq. (3) to hold during the enti re response . If small-deflection eq-

uations are not used , such “permanent” mode solutions do not exist . A conven-

ient way of performing the integrati on in these cases is by means of a sequence

of “instantaneous” mode form solution s (3 , 4). At finite deflection s the so-

lution can be put in the form of Eq. (3) if the deflection is regarded as in-

stantaneo usly fixed and known • Thus the instantaneous shape function $1(x) =
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• changes during the response and may be wri tten as ,1(x) .  Success iv. “solut ions”

in this ~~rm ax’e linked through equations of the form

• ‘tu>

- 

u1(x~t~~1) u1(x ,t~) + ~!- (T(t ~ )+1(x) + T(t~~1)~1(x)) (8a)

T(t~~1) T(t~) + ~~~~ - (1~(t~ ) + +(t ~~~1
)] (8b)

This method is not exact , even thoug h the field equat ions are instantaneous ly

satisfied; the mode solution has a smaller energy dissipation rate than the actual

motion at the same level, of kinetic energy [7]. This method may be expected to

lead to a response of longer dur ation and larger deflection s than the actual.

motion of the structur e would be under the same start ing conditions , so that the

approximation due to this device, for carrying out the integration for large de-

• flections is therefor e expected to be conservative .
- Here we write the e uatio ns used in both the mode technique and the deflec-

tion bound method ; the dynamical equa tions for the latter are obtained by setting

the accelerations equal to zero.

The not at ion is indicated in Fig. 2b. We use rectangular coordinates x, y

with origin at the base A of the left-hand columo. Velocity components are

shown in Fig. 2b. Nondimensiona l quan tities are used , defined as follows

y = ~~
. , t = ~~- (9a)L 2

• •• u w , w W , u = — —  , w = — —  (9b )
H a t  H~~t

- where 
~~, ~ ; ~ ; ii, i axe coordinates , time , and displacements in physical

units , H is thickness , and r 2L1/p[00 is a reference time , p being

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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mass density and a
~ 

bein, a stress property obtained from tests on strain

rate dependent plastic behavior , as defined more fully below. For genera l

stress and strain states in a one-dimensional str ucture , relations between

• 
- bend ing moment , axial force and the corresponding strain rates are required.

We take the viscoplastic behavior to be expressible in the form

a ~~.1 l/n• -
~- — = l + I ~ - I  , (10)

0
0

where a , c are uniaxial stress and plastic strain rate , respectively, cot’—

responding (in general) to a fixed level of plastic strain ~!‘ ~ and

n are experimental constants -appropriat e to that level. For mild steel

the pair a , are more appropriately taken as lower yield stress and cor-

— responding strain rate, respectively; then has the sipnificance of yield

stress at zero strain rate. Equation (10) is capable of very good represent-

ation of observed dynamic plastic behavior for the metals with strong strain

rate sens it ivity, provided strain rate h istory effects are negligible. General-

izaticns of Eq. (10) are easily written, e.g. [‘4, 81. These involve a yield

condition , plastic stra in rates being zero for stress states inside a yield

surface . We adopt a simple r form derive d from that of Eq. (10) , which is h~ flo-

geneous and involves no yield condition [9]. This “matched viscous” represent-

ation replaces Eq. (10 ) by

1/n ’
-
• 

~~ ~ O 

(n a)

• where a ’ •v~0 , n ’ = un , with • 
(nb)

• 
1~~~~ l/n _ 1~~~;2~’n ( )ii - 11c

- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
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• where ~ is the strain rate at which the two expressions, Eq. (10) and (h a),

ax’e matched in the sense of having the same stress and slope do/d~. In gener-

al ized forms , ~ is the appropriat e effect ive strain rate .f The following expressions are generalizations of Eq. (h a) approp riate for

general states of stress in our’ frame :

1/n ’ i/n ’ -

in = + i~~ sgn (~ + i )  t - ,
~ sgn(~ - ~)} (l2a)

1/n’ 1/n’
sgn(~~ t~~ ) -  I~~-~ l sgn (~~_ ) }  (12b)

where ~~~~~~~ s= ~~~~, ~~~~~=~~~~~
-_
, n = ~~ - (12c)

14 
~~ 

a ,‘ N bHo = (12d)

14 , N being physical bending moment and axial force , respectively and K ,

being curvature rate and axial strain rate respectively in physical terms. Al-

though derived from a sandwich beam model [2, 3, 14] , the values for pure bend-

ing and extension are either exact or ext remely close to the correct values for

a rectangular solid sect ion . These constitut ive equati ons are conservative in

the sense that for a given strain rate stat e the stre~~ levels are less than

those in the solid section.

We next write the strain rate components in terms of velocity and displace-

ment components in the two members AB and BC , using dimension less variables

(see Eqs. (9, 12) and Fig. 2) • :

—~~~~--- ~~~~~ —— ___— __.~~,__•_.~___
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~AB = - ‘
~~~~~~~ 

U~~~ , - ~~
. w~~ (h3a ,b)

~AB 
~~~~

‘ (_ 2W ~~ + UABU
~~) 

(13c)

2

‘
~BC a [~! ~ c + (l3d )

where a = ‘4L~~~T/H 2 = (8L fH 2 )1~7~

and a prime denotes differentiatioti with respect to y in AB and to x in

BC; note that 0 < y < 1 , 0 < x < 1 . The expressions for axial st rain rate

in Eqs. (13c, 13d) contain terms where the deflection curve appears through the

rotation (slope), as in the “von Karman equations” of buckling theory. They

are second order correction terms , valid for deflections of moderatel y small size

compared to the span.

The equation of energy - dissipation rate can be written for’ both types of

L I ’ Ti
- ç J ~~AB’~AB + WABWAB)dY 

- J ~‘tc~ac + “~BC”BC~~~ 
-

0 0

L
= a 

~~~J (mAB~AB + sAB flAB )dy +aJ (1nBc~Bc+ SBCflBC~~7C (1’4 )
1 0 0

where k = G/2PbHL 1, and wBc(1 ,t ) ,  
~~ 

i~~ (l,t) are velocity and accel-

erat ion of the block of mass G. When applied to the frame with attach ed mass ,

is given the red uced value 5.625 In.; for the frame without attached mass,

k = 0  and L1 6.OO in.

The equations of dynamics, end conditions, and equations of continuity

consistent both wit h the kinematic forms of Eqs. (13) and the dissipation-

— - - ----~~~—.-— —•-. ---
~~

- —‘—-- —.---- --— ~ ~~~~~~~~~ -~—-•- - —~ •-•- • •__~~_4;.S.__• ~~~~~~~~~ ~~~~~ — - --- I
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energy rate equat son (14 ) are derive d as the Euler equations of the latter,

~
- 

~~• 
- 

the velocities and associated strain rates be ing treated as virtual quantities.

- The dynamical equations are found to be
- 

L2

+ 4(SABuAB)’ = U~~ (l5a)
- 1

+ L4 (s~~~w~~~) ’ 
~BC 

( lSb)

L2
H 

5AB - 

L2 WAB 
(l5c)

L
4 ~2- sL~ = U

~~ 
(l5d)

k End conditions are :

- • 

At C. x 1 : mk(1,t )  = — k
~BC

(1,t) (16a)

• w
~c
(1,t) %~~c

(1,t )  1~~c
(l ,t )  = 0 (16b, C , d)

-

. 

Equation (16) is recognized as the equation of motion of the attached block;

Ic is put equal to zero for’ the frame without attached mass.

At A , ~f 
= 0 UAB(0,t) = t1AB(0,t~ = WAB (0, t)  = 0 ( 17a , b, c)

— At B , y = 1, x 0; continuity conditions are found to be

• 

* 
. 

UAB (l ,t) = 
~x

(0,t); ~(i ,t) = w8c(o ,t )  ( l8a ,b)

- 
mAB(1,t) mBC(0,t); ~~- iAB(l ,t )  = 

~BC(0,t )  (l8c,d)

- 

1nAB
(1,t )  + 4sAfl

(1 t ) u AB
(1

~
t )  - 4~1~

! 
sBc

(0)t) C) (l8e)

— 
___

~ - — --- •- —--



—~~~~~ —‘  — ~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~1’ - ‘ - • , -

~~~~~~

—

~

— •

11.

4 
~~~ 

S~~~(l~~t )  + ~~c~~,
t )  + 4sBC

(o ,t )w
~c(0 ,t )  = 0 (18f)

We have made the assumption , in calculation s made to date , that the deform-

at ions are flexura l, with un import ant effect s due to lengt hening or shorten ing

of frame members. This is reasonable in view of the proportions. Hence the

simplifying assumption of inextensibility was adopted, with n 0 in both

members . The axial forces are then reactions, and Eqs. (l2c , d) furnish re-

lations between axial and transverse velocities:

• .
‘ — — ‘ 

.
‘ ‘ — w ’ ~ ‘ (19a b)WAB 

- 
L2
UABUAB U

~c - L1 BCW BC

The constitutive equations then reduce to those for pure bending :

1/n’ • 1/n’ .
mAB ~‘~ AB ’ 

S~n~~8 ~ m~~ ~“~ BC ’ s~nF~~ (l9a,b)

In the mode approximation technique we look for solutions in separated-

variable form , writing

wAB (y ,t) = 
~~
(t)4,(y )  

~~&~
c’t~ 

= 
~~
(t)$,(x) (20a,b)

1
~~B

(y ,t) ~~(t )~2(y)  ; i~i~~(x ,t) 
~~

(t )
~2

(x )  (20c,d)

where = 1 at x = 1; thus w~~(1,t) is the transverse velocity at

midpoint C (the major velocity magnitude). With these forms substituted in the

equations of dynamics Eqs. (15) and the kinematic relations Eqs. (13), it may be

seen that the system of equations can be split into ordinary differential equa—

tions containing either space or t ime variables , provided the rot ation terms from

the current deflection field are regarded as fixed. If these are treated as

known at some stage of the response, the resulting eigen-problem can be solved

to furnish the corresponding shane functions and •2 ~ and the current

acceleration w
~ 

and velocity 
~~

— — — —. .- —
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Details of the integration by an iterative scheme are given In the Appendix .

• The deflection bound is deter mined by a closely related numerical scheme, also

outlined in the Appendix .

The Integration of the nondimensional equat ions, starting from an Initia l

velocity field i~~(x) , can be completed once values are assigned of the par -

ameters a , n , L1/L2 , L1/H , as well as of the in itial velocity amplitude

(Note that ~a and ii ’ = vii are obtained from these and the current

strain rates ). The end of the motion occurs at time t~ such that ~~,(t~ ) = 0 ,

and the final deflection components are w~$1 , w~$~ . The final deflection

amplitude and response t ime can be presented as

-f
Wf, f . •

- • 
- f l— : w~ F1(w~~, a , n , L1/H , L1/L2 , Ic) (21a)

_ f =  t~~ F2 (~~,, a, n, 111/ H ,  L1/L2 , k) (2]b)

where we recall t = 2L1/ø/ a0 , cx (8L~~~/H2 )/~ 7W , Ic = GI2L1pbH.

Examples of plots of w~ and t~ as functions of x~ for various values

of the material and geometrical parameters are shown in Figs. 3 and 4 . The de-

crease of velocity amplitude to zero is illustrated in Fig. 5. The two sets

of curve s of Fig. 3 illustrate how the parameters a and n affect the

final deflection, the remaining parameter’s of Eq. 21 being held fixed. The

curves of Fig. 4 indicate how the duration time is affected. Weak dependence

on both a and ii is evident. For example, multiplying a by 1/4 or 1/100

reduces the deflection by only about 10 percent or 50 percent, respectively.

Fig. 3b shows that depends’mce on n is similarly weak. The insensitivity

to these parameters can be understood from the form of the equations. For

example, the energy rate - diásipation equation based on the mode-form

— — - 
~~~~~~~~~~~~ : . ~

_
~
__L__ _ :~~ ;• -



- ,• •- - •- - ----— -- .-• •-~~~-- - - —- • - --• • - ~~~~ —--- - • • • ---- - - —~~~~~~~~~~~—~~~~~~~

13

velocity field is

1 1.
t •  1/n’ a 1+—, li—,

~~~~ 
( Iy + e I  ~~+ I y - eI ~i ]di (22 )

£ ~a

where the line integrals extend over ’ the half-frame ABC , and

L L2 L2 L
On AB dt = —a- dy , y =- .-

~~
.
~~~~~

“ , e = 4J~(_ 
~~~~

- ‘ + U ’ •‘)1 A B 2

On BC : dt dx , ~~~ - + ~ e=4 ( j~4~~+w~~$j)

Here , as in all equations of the system, a appears only in the cou~ inat ion

Since n ’ vn , where v depends on current strain rate (Eqs .

(llc)) and is oft en approximatel y 2 ; and since n is large (5 for steel Or’ 9 for

titanium ) , the weak dependen ce on a is evident . We obtain results for a

perfectly plastic material by putting p = 1 , n’ -‘ ; as expected, then the

acceleration is independent of velocity and the paramete r a disappears.

This insensitivity to a and n is an advantage in app lications . Once —

the integrat ion has been carried out for nominal value s of the parameters, giving

curves of w~ and tf as function of over a suitable range , these curves 
-

•

can be used for many particular cases of interest . For the uniform frame two such

curves are shown in Fi g. 6 for “stee l” and “titanium”, and an analogous pair of

curves is shown in Fig. 7 for the frame with attached mass • An inverse procedure

is used to apply these to the dat a of a particular test . First , the initial

vc~1ocity matching formula Eq. (6) of the mode approximation is written( in terms - •

of nondimensiona l. quantities ). Then from the relation between measured impulse

I in physical units and the non-dimensional initial velocity w~ , the impulse I

corresponding to a part icular x~~ is obtained . Thus we obtain ~?~ /H and

~~~ lLI~uI2.~j  
- 

~~~~~~~~~~~~~~~~~ - _ - _--t----—--—- — -—---— - -- — —-
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t f = t f /t as function s of I . The results for the two types of frames are

0 1

(a) Frame with k = bH 2
/W0 (1 •~dx + 

kJ 
(23a ,b)

attache d mass Wc + k we o

(b) Frame with ~~ I l ~
’ 

I 
- 

2 
_ _ _ _ _ _uniform beam ~~

- ; —
~~ 

= bH (23c,d)
W 

J $ ~dx we f • 1dx

Taking dat a for the two types of frame and two materials, final deflection

ratios are shown in Figs. 6 and 7 as functions of nondimensional mode velocity

. From these using Eqs. (23b , d) are obta ined curves of deflect ion versus

impulse in physical units. Examples of such curves are given in Figs . 8—12 , with

points shown also from tests El) .

In computing the impulse I corresponding to a chosen value of from

Eq. (23b ,d), values of b , If , p and a -appropriate for a particular test series

are used , and these are used also to determine the approp riate value of the par-

ameter a = (8L~~0/H
2)1 pfa

~ 
. However in view of the insensitivity of the curves

for w~ vercus to a , it is evident that a curve for a nominal value of

a can be used for othe r cases . Thus the curves of Figs. 6 and 7 serve as

“master response curves” for frames of a certain type of material and geometrical

configuration .

• To illustrate, a nominal value of a for the steel frames tested El] may

be taken as 550 , corresponding to material and geometrical values in Table 1 of

(1]. In particular , 0
0 

= 33,100 psi was used , from strain rate data on the

• material of those tests. Thus for example, a final deflection ratio : ~~/H 20

corresponds to a nondimensicnal initial mode velocity x~ = 18.0. Using Eqs.

(23) with H = 0.123 in., a final defl.ction of 2.46 in. is estimated to require

- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ • —~~~~~~~~— 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a uniformly distributed impu,]~ae I = 0.75 lb -seC, as plotted in Fig. 10. Now

suppose a frame of the same dimensions but of higher strength steel with =

90 ,000 psi is to be considered. The new a would be 550/~~.l/9O 334 , but

the same “master curve ” of Fig. 6 can be used , since the change due to a ~eO

- •  percent reduction in a is negligible , by Fig. 3(a) . Hence the impulse on

the stronger frame required to produce the same deflection can be estimated as

0.75190/33.1 1.2 lb—sec.

This simple type of calculation was used in analyzing the tests (1] to

estimat , the effect of strain hardening in the titanium frames • Th. values

of 
~~0 

n , and £
4) 

depend on the plastic strain at which (a , t )  are ob-

served in test s at nominally constant stra in rate • At = 1 percent and 2

percent , values of a0 were determine d as 35 ,000 psi and 38 ,000 pai , respect -

ively . Values of total impulse for both value s are shown for the estimated

deflection curves for tit an ium, Figs. 9 and U. In most mpplicaticns one sia-

ilarly want s to explor, a ran ge of values of various parameters, including var-

ious load distributions over the structure • It is seen that the pres ent tech-

nicpae is particularly efficient for such explorati ons, and contrasts with the

typical wholly numerical approach . -

3. Comparisons with Test Results

As already noted , experimental results El] are now available for ’ check-

ing the estimation techniques . The basic concepts (min imum potential energy

and the mode velocity matching device of Eq. (6) )  are not In doubt , but the

magnitudes of the intrin sic errors in estimates of deflect ions and response

times are unknown . Unless these errors ax’e reasonably small , and unless the

further errors involved in implementing the techniques are also reason ably

small as well as generally predictable as to sign , the methods will remain

_ _ _ _ _ _ _  
--___ I
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of uncertain mean ing and limited usefulness . Thus the experiments are crucial

for assessing the relative importance of the two classes of errors , and for

- * confirming or otherwise our expect at ions as to the incident al sources of er-

ror.

The deflection ~~per boun d curve s plotted in Figs . 8-U in every case lie

above the test points , indicating that the incident al errors in this calcul-

ation are either small or predominately positive. However, for the mode tech-

nique the situation is not so clear . For the concentratea impulse tests ( frame

type (a)) the intrinsic error is negative , since ~~ < from Eq. (23a) ; for

the uniform impulse tests (on frames of type (b)) 
~~ 

> from Eq. (23c) ,

and the intrinsic error is positive . If all other errors were negli gible , we

would expect the tests points to lie above the estimated curves ( for finite

deflectians ) in Figs . 8 and 9, and to fall below them in Figs. 10 and U. No

such consistent relation s are disceroible in these figures . In the case of the steel

frames with eithe r concentrated or’ dIstributed loading the test point s lie es-

sentially on the estimated curve (although for concentrated impulses they tend

to be consistently higher at the larger impulse magnitudes) For the titanium

frame s under concentrated impulses the test deflection s fall well below the es-

timated curves , although approach ing them at the large r impulse magnitudes .

Under distrib uted impulses the titanium frames showed final deflections agree-

ing quite closely with the estima ted curves. (For tit aniue two estimated de-

flect ion curves by the mode method are drawn , for two values of ao ; as already

noted , these correspond to two choices of strain level) . The fact that the

experiments do not clearly show the intrinsic errors suggests that they are

masked by effects of the further idealization s and approximations made in apply-

ing the mode technique . We next list these and consider them briefly .

-- —- —•-~~~-•--- -— -~~ - -~~ 
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(1) A “rigid-viscoplast ic” theo ry was used: elast ic deformations ~~rs neg-

lected (elastic moduli taken as infin ite). Here ~~ are considering

strongly rat e sensit ive metals so that stress levels are raised and elas-

tic strains probably increased in importance On the simplest basis , we

may suppose that the energy ratio R of initial kinetic ener gy to total

elastic str ain energy capacity must exceed about 6 for an error of less

than 15 percent In the permanent defle ction ; this takes over a result (103

derived from a one-degree-of-freedom model and seeme conservative for psi’-

fectly plastic behavior . The values of impulse required for R ~ 6 ar’s

indicated in Figs . 8-11. If the same result s held for the present rate

sensitive materials there would appear to be some correlation between this

(arbitr ar y) criterion for the neglect of elastic deformations and the ex-

perimental discrepancies . In the one case where the criterion is not

satisfied in some of the tests , namely the concentrate d impulse tests on

titanium fra mes shown in Fig . 1k , the test point s at the smaller i~~ulse

magnitudes fall considerabl y below the estimated deflect ion curves, but

approach them as the impuls e is increased. Note that for this case the

intrinsic error is negative (the test points should Lie above the esti-

mated curve in the absence of other errors); hence the effect of elastic

defi ections would be even large r than indicated.

As alread y noted , errors due to elastic effects may be larger’ when the

material is strongly rate sensitive than indicated by the criterion ap—

plied , as above , for perfectly plastic behavior . The omission of elastic

defor mations makes for subst antial simplification , but further basic re-

search is needed to determine what errors are likely to be cause d by it.

It should probably be regarded here as a major suspect . — 
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(2) The ccnstitutive equations expre ss plastic strain rates as explicit func-

tions of stresses , with implicit account of strain hardening through the

experimental const ants . If the arbitrarily chosen plastic strain level

is low (or if the lower yield stress is used rather than a fixed strain

level), squatiens of this type would underest imate strain hardening and

hence lead to over-estimates of deflection s. However , as illustrated for’

the tit an ium frames , it is easy to deduce deflection estimates based on

a larger magnitude of plastic strain , and thus to take account of strain

hardening.

(3) Strain rate histo ry effects were neglected , the experimental constants

being obtained from tests at nominally constant strain rates . The in-

fluence of prior strain rate history has been studied mainly by tests in

which the sti’ain rate is rap idly increased (11]. A few tests involving

a rap id decrease have been descr ibed (12]; these would be more directly

relevant to the present response histories , where the struct ure is set

in motion In a very short time, after which the strain rates decrease to

small values , perhaps roughly monotonically. On the basis of various

hypotheses to account for observe d histo ry effects , in particular the use

of plastic work as a state variable (13] and dynamic recovery (1k], one

would expect strain rat e histo ry effect s in the present case to lead to

positive errors , i.e., to cause the test specimens to deflect Less than

the estimated value . The data are quite limited , but there seems little

reason to expect that such errors would be important here .

(le ) Constitutive equations of homogeneous viscouu type (without yield con-

d.ttion) were used, derived from inhomogeneous forms based directly on

strain rate test data . The matching formula used (Eqs. lic) is such that

the stress levels are lower , at the same strain rate , than those accord-

- - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~- - ~~-- -— __J_ __ —_ 
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ing to the more reali stic forms . Hence over-estimates of deflect ions are

again expected . The errors due to this device have been very small in the

examples worked to date (3 , 9]. txper’ience is limited, but there seems

no reason to expect large- errors in the present cases .

(5) The deformation is assumed to remain flexura l. at large deflect ions , with

axial forces treated as reactions * Expressions for center-line strain

rats in terms of transverse and axial. velocity components are of second

order accuracy (pr oduct of rotation by rotation rate). Setting the axial

strain rate equal to zero furnishes relations between the velocity coin-

ponents , Involving the transverse deflection.

The errors due to the use of approximate strain expressions at fin-

ite displacements , and to the assim tion of zero net center-line strain

rate are difficult to assess as to magnitude or sign. The second order

terms are those widely used in approximat e theories of buckli ng , but are

clearl y valid only in a range of “moderately large ” deflections. At final

deflsct ions approaching a third of the span , this represent at ion is quest-

ionable . The treatment of axial forces as reactions which do not contr i-

but e to the energy dissipation rate implies a certain over-e stimate of

local strength. However ’ it does not seem possib le from this to argue how

the final. dsflections will be affected . Intuitive ly we feel. that th. er-

rors - due to these aspects are not serious ones, but further investigation

is necessary.

(6) The pressure pulse is ideal ized as “impu lsive” , delivering finite impulse

in vanishingly small time . It is well known that this idealization leads

to over-estimates of major deflections (15] when applied to rigid-perfectly

plastic structures using small deflection equat ions. The error in the

over-estimate in those cases can be shown to be given approximately 

-~~~~~~ - -. -_~~— 
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by the ratio of the pulse duration to the duration of motion of the struc-

ture • These result s certain ly do not apply exact ly to problems where visco-

plastic and large deflection effects are important . However in the present

pr’oble~s the puls. dura tion is very short compared to the resp onse time of

the structure ( roughly 10 usec compared to 10 macc), and the resulting er-

ror is believed to be positive but of minor importance .

(7) The integra tion techn ique used to obtain final deflect ions of the struct ure

with initial mode form velocit y employed “instantaneous mode” solutions

at a sequence of times , each such solution cor~’esponding to the current de-

flection field. They are linked by proper di fferent ial relat ions only at

one point of the structure , where the major velocity and deflection magni-

tudes occur . Hence althoug h current field equations are sati sfied , some

continuity conditions are disregarded. Extremal theorems are available for

the small-small equations (7, 16]. These can be applied to the cur ren t

state and show that the mode form velocity field renders the energy die-

sipation rate an extremum imong all k inemat ically admissible fields with

the same kinetic energy . Here the extremum is a minimum, and the theorem

characterizes the mode form solution as minimizing the ra te of decrease of

kinetic energy , for a fixed level of k inetic energy . The err or in. using

this technique is therefore infer red to be positive.

(8) Apart from the basic approximation in treating the actual motion as a se-

quence of instantaneous modes , the determination of current mode shapes

and accelerations involves solving a nonlinear eigenpvob lem by numerical

means . This was done by an iterativ e scheme , as outlined in the Appendix.

• The numerical scheme made use of a subdivision of the colusm and half-span

into 100 elements • It furnishes an essentia lly exact 8olution at low cost •
No difficulties with convergence were met at any deflection magnitudes, and

- i— -~~ - ,- b—- - -. -
-- 
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it is believed that negligible errors are introduced in this part of the

response calculation .

The aiinplificat ions discussed above are involved in both the deflection

bound and the mode techn ique , with the exception of (7) which obviously refers

only to the latter approach . It may be noted that in the numerical evaluat ion

of the deflection bound , the iterative scheme used for determining the deflected

shap e under static loading has common ground with that used in the numerica l

solution of the eigen-proble in of the extende d mode technique.

It is seen that the err ors that can be identified with the idealizat ions

and approximations as listed are mainly positive , i .e . ,  such as to cause too

large a deflection . The exceptional cases are items (5) and (8), where no state-

V ments on the sign of the error seem tenable. In some cases , for example the

neglect of elastic deformation and of strain rate history effects, the arguments

are somewhat conj ectural . This seems unavoidable at the present stage.

The comparison of test results with the large deflection bounds indicates

that the method of calculation of the bounds is satisfactory. However , their

comparison with large deflections predicted by the mode technique shows incon-

sistencies . In the tests with uniform impulse where the intrinsic error is

positive , as are most of the other errors, the estimated deflection curve should

lie distinctly above the test points ; the actual test points lie essentially

on the curves , Figs. 10, 11. In the tests with concentrated impul!e, the in-

trinsic error is negative. This is shown clearly by the results for steel

frames in Fig . 8, which suggests that the other errors are small by compa rison .

However , the results for the titanium frames in Fig . 9 are then anomalous,

since to explain them the incidental errors must be large . Here perhaps the

influence of elastic deformat ions is more important as indicated by the energy

ratio criterion .
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— We note the comparison between test and estimated results for a secondary

deflection magnitude, namely the inward deflection at the top of each coluan .

Figure 12 illustrates these results for the titanium frames of both types (1).

The test points agree reasonably well with the predict ions of the extended

mode techn ique . In a “small deflect ion” theory this deflection , of course ,

is zero .

Finally , Fig. 13 illustrates the comparison of the estimated response time

t~ by the extended mode technique with the two t imes obtained from strain gage

records [1]. The time t~ is the time for the first maximum strain . The time

t~ is the intercept on the rising strain curve of a line drawn at the estimated

final (permanent ) strain . The estimated response time falls between these two

measured times with surprising consistency .

In conclusion , the present work has illustrated the application to 1arge

deflections of an impulsively loaded vi scoplastic structure of bound and mode

estimation techniques . The eff iciency of both techniques compared to purely

numerical approaches has been emphasized . Comparisons with fairly comprehensive

experimental results [1) have validated the deflection bound calculati on , but

have shown up inconsistencies in the estimates of final deflect ions by the ex-

tended mode technique . These demonstrate the need for further study of the

approximations made in imp lementin g this method . Despite this , it is worth

emphasizing that the estimated deflections by the extended mode method in most

cases agree extremel y well with the fin al deflections observed in the tests.

In the one test series where the discr epancies are large (Fig. 9) , the estimates

are conservative (actual permanent deflections are smaller); these occur in cir—

cumstances of relatively small final deflection s where elastic defiection s are more

important . Hence there seems no doubt that practical use can be made of this

approach , with normal caution .

.4 — - - -
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Captions for Fic~ures

Fi’~ure

1 Frame types considered here and in experiments [1]. Type (a) has
steel block at midpoint of transverse member, tvne (h ) has un i form
transverse member.

2 Notation for mode form solution.

3 Final deflection as function of initial mode form velocity (both
dimensionless): (a) showinu denendence on parameter a, (b) show-
in~ denendence on power n of strain rate behavior law.

4 Time of response as Function of initial mode form velocity (both
dimensionless)~ (a) showing dependence on narameter a, (b) show-
in~ dependence on nower n of strain rate behavior law.

5 Typical curves of mode velocity as function of time.

6 ‘Master resnonse curves” of final de flection-thickness ratio as
function of initial mode velocity amplitude , for tvne (b) frames.

7 “Master resnonse curves” of final deflection-thickness ratio as
function of initial mode velocity amplitude , for type (a) frames.

8 Comparison of observed final midnoint deflect ions in tests Ill
with deflection bound and oredictions of m ode approximation tech-
ni que , for steel frames of type (a).

9 Comnnarison of observed final midpoint deflections in tests ii]
with deflection bound and oredictions of mode approximation tech-
nique , for titanium frames of type (a).

10 Comparison of observed final midpoint deflections in tests El]
with deflect ion bound and prediction s of mode approximation tech-
nique , for steel frames of tyne ( h ) .

11 Comparison of observed final midpoint deflections in tests El]
with deflection hound and predictions of mode annroximation tech-
nique, for t i tanium frames of type (h).

12 Comparison of final lateral deflection at ton o~ column observed
in tests [11 with oredictions of the extended mode anoroximat ion

• technique.

13 Comparison of time Lo final deflection predicted by extended mode
technique with times obtained from strain ,zare records in exoeri-
ments 1:1]; t~ is time of neak deflection (strain), t~ is time
of intercept with risinp strain-time curve of straic—ht line d rawn
at final strain level ; strain measured at ton of column .
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Appendix

The iterative scheme used to determine the instantaneous mode at each

time stage in the mode technique is essentially the same as that  used in

the soLution for finite deflections of a circular plate 14]. It is note-

worthy that the deflection function giving the deflection bound can be

obtained by the same iteration scheme. We shall sketch briefly how the equa-

tions of the two problems can be put in analogous form, omitting most of

the details.

Equations only for the transverse member BC will be written , for

brevity. We look first at the mode technique . When the modal forms of

Eqs . (20 )  are used , the dimensionless bending moment in the transverse

- • member BC can be written as

a.,. ~~ f l ’
m ~j (—

”) 
~-4~~ 

sgri (~~ !j )  (A l )

Equations (l9b ) ,  (lsd) , ( lsb ) can be integrated with respect to x and

put in the following forms :

(l9b) = - 
~~w ’4~ (A2)

(lsd) s = 
~~~~~ J ~2d~c + s ]  (A3)

l o

i~~ 1/n ’ 1/n ’ , x
(l5b ) i i (— ~ 

) C -4,!,~I sgn(—$!jYI + 4sw ’ + A]

(A4 )

Here s and A are constants and the prime denotes differentiation with
0

respect to x , position in member BC measured from B. (All quant i t ies  refer

to this member , but s - 
- . ri pts are omit ted) .  Similar equations can he

written for member AB , and the boundary conditions include f ix ing  at A and

~ 

I-~~ IA~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
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~
,• 

~~~~~~~~~~~~~~~ 

•
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C, continuity at B , and the normalizing condition 1 at C . After

use of Eq. (A3 ) ,  Eq. (A4 ) can be written as

1/n ’ , x x
) A{J +1dx + A — 4w ’[~_ I + 2dx + s

~]} 
(A5 )

where 1/n ’
(w *A ‘~ /uI,~—

Integrating Eq. (A2), we obtain

*2 = — 
~~~ 

— j w ’+ ~ dx] . (A6)

At any stage of the response the slope function w’(x) can be

est imated from the field at a preceding stage together with the velocity and

accelerat ion fields at that stage. Admissible shape functions •1(x) in

BC and $2 (y) in AB can also be guessed, satisfying the stated conditions

at A , B and C; the functions for the preceding stage may be used , except

at t 0 . Eq. (A6) then furnishes •2 (x )  in BC , apart from integration

constants. With use of the analogous equations for AB and the fix ing ,

continuity, and normalization conditions, all of the integration constants

can be determined, and new shape functions obtained . From each set of

functions the quantity A (Eq. (A5)) can be computed from the energy

rate—dissipation equation (14), which takes the form

= - 
J;

I_ +~ I~ %’ dx +~~~~~. 
j
’
i_,~ ,l4i dy 

(A7)

f (*1 + $ ~ )dx +~~~~J ($~~+ $ 2)dy÷k0 l o

Cycles of iteration may be terminated when the magnitude A reaches a

steady value. From the final values, the velocity and displacement fields

-- --- - ~~~~~~~~~~~~~~~~~~~~~~~~ — • —~~~~~~~~~ -~~ —— -
•~~~~~~~~~~~~~

•--——-•- 
~~~ - - - - • -  A~_ -~~-• ~~~ -~~~~~
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can be written , and approximate functions for a subsequent instant

obtained . •

• At the start , w ’ 0 and w~ is chosen arbitr arily, with guessed

admissible functions •2(y )  and •1(x ) in AB and BC , respecti vely .

The response termina tes at 1*(t f ) 0 , final deflections being obtained

by int erpolat ion when ~~ first becomes negative.

The deflection bound requires only one determination of shape functions

over the frame , rather than funct ions at a sequence of times during the

response as in the mode technique. To obtain an upper hound on the final

deflection of the midpoint C of the frame , a force P is applied at

this point. If the work done quasi—statically by this force in tim e t f

is not less than K , where t is the actual response ~me and K trie riven
0 f o

initial kinetic energy, then the deflection corresponding to this force is

an upper bo~md on the same component of deflection result ing from the given

initial velocities.

Use of minimum work paths to fixed final strains at time tf 
[2 ,3]

for the material behavior represented by Eqs. (11,12) enables us to wr ite

moment-curvature relat ions

f• f • n M f
ICt

f 
= K = K

Ø
t
f 

— ~~~ M (A8)
n’+l pM

- 

where IC~~ and are curvature and moment at time t f , respect ive Ly .

Nondimensional stresses may be defined as

t
f 

1/n t 1/n ‘ M~a n~+i W~ ~~~~~~ 
(Mi

0 0

where ~ 2L1v’~7~ is the reference time used aiso in the mode method . -~ -

•

— - - ~~~~~~~~~ —~~
—----— ~~~~~~~~~~ — - 
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The equation of equilibriu m for the beam member BC with a concentr ated

‘ force P at L~, written as a delta function , is

H” + (Nw)’ — ~~~ 6(x—L 1) . (M O)

This may be int egrated once , and with nond imensional variables as in Eqs.

(9) and (A9) the four equations for this member can be writt en as

+ ‘ew ’ = (Alla )

1/fl 1/n

~ 
sgn K~~ = p — ~

. ii ,~
t sgn (— w ”) (A].lb)

0

a = C1 = constant (Alic )

l H  , 2u~~~~~~~y.~~( w )  (Aild )
1

t l!n ’ L P  _ _ _

wher e p = 4. , and ~ = 8L~c0fp/a0 IN 2 
. The analogous

equations for AC , and the boundary and continuity equations , are omitted

for bre vity . The work-kinetic energy condition Eq. (ib) takes the form

1/n ’
2. ~ 2pa H N] [J’ I~~ ’~’dx + ~~ J l  IaIn ’+l

dY] 
. (A 12)

In these equat ions , the response time t f appears explicitly only in

Eq. (A12), because of the definitions of in and p • The inequality shows

that t f ~ which is unknown , may be replaced by an upper bound t~ • We

shall not att empt to derive an exact upper bound . Note that tf appears

only as t~/~ , where n ’ is large (e.g. ,  10), so result s are insensitive

to tf • For small deflections and rigid—perfectly plasti c behavior , upper

bound s on the resp onse time for the present frame problems can be obtained

by Lee’s method [17] and written as

—--- . -•- - -~~~~~- • — , ~~~~-~~ —- - - - - ‘-- • -.--- •~~~~ •~ •----~• - - -- —• — - 
_ _~••.~~_J~ _,_ -a-——- .
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~L2V
t f fl 4)4- 

(A13)
0

where n = 2k11+1/3k for type (a) frames (attached mass and concentrated

impulse) and n = 2//i for type (b) frames. The effect of finite deflections &

is to lengthen , while that of strain rate sensitivity is to shorten the

response time. Hence while the expressions for t~ are not exact for

our conditions , they are probably more than adequate.

It is convenient to write the deflection field in the form

w = D*1(x) in BC ; w D+1(y) in AB (A14a )

u = 
~~~~~~ 

in BC ; u = D$2(y) in AB (A14b)

• where D is the dimensionless displacement at the midpoint C of the

beam member . An iterat ion scheme is started by giving D an arbitrary

value, e.g. ,  D = 20 , and assuming numer ical functi ons •1(x) in BC and

in AB . Equations such as Eq. (Mid ) then furnish the correspond - -

ing axial components $2(x) in BC and +1(y) in AB • The equat ions

of equilibr ium (e.g. ,  Eq. (Alla )), together with the moment-curvature

equations (e.g.,  Eq. (A.Ub )) , can now be written ent irely in terms of the

trans verse shape functions •1(x) and $2(y) and their derivatives ,

so that from start ing functions new functions are obtained by quadratu res,

wit h constant s of int egrat ion which must be found from the boundary and

continuity equat ions . The fortis of the equations are identical with those

in the mode method, with d ifferent meaning of the constants.

The experiments with which we hay, made comparisons involve direct

measurements of the total impulse (I ) applied to the fra me . Thus for the

two frame types 

~~~~~ _______ - -
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(a) ~ GV0 , K~ 4 cv~ 
i2 i 2 

(AI 5a)

= 

(b) I = 2L1~V . K = L
1~

V~ = 
,~~~~~~ ... = (Al5b)

Using these and the expressions for the upper bound on response time , Eq. (A13),

• we have relations between impulse and midpoint deflection ratio D w~/k4

as follows
1 1

Type (a): 1 2 
~2 ~~~ 

2p 4~j. D ].6kHD2 ) ~t’t~” (x) • (y)]
• L k b f f L pe I 1. n L a

1. °~ (Al6a)

a with t~ = 2k/I. + 1/3k , k 
-
= G/2L1pbII

- 1 1
• 1+ —;- 2 2 ’

Type (b) : 2 = 2p D 2 *[~1~(x) , •‘~ ‘~
]

b H L p a  1 Lcz
1 ° (A16b)

where (for both types)

1 1+4 L 1 i+-~-

4~E$’j(x)~ •~(y)) = f ~~
— •!~( x ) f  ‘~ dx + t~•f r)~ 

•
I I ( y ) ~~ 

Ti dy (A1&c)

Suitable values of p = a’IU~ and V = n ’/n are obtained from the initial

strain rates by means of Eq.(ll). The initial mode form velocity field , with

magnitude ir  derived from given initial velocity or impulse values through

the mode matching technique of Eq.(6), may be used with •(x) and $(y) determined

as outlined above . This field gives initial, maximum curvcture rates and strain
F

• rates which, of course , are not the actual initial stra in rates , but are

smoothed values that are appropriate for present purposes.
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Applications are described of two estimation techniques to obtain final
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span (thirty thicknesses) are estimated by the mode anproximation and deflection
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viscous constitutive equations. Comparisons are made with recent test results,
and the degree of agreement is discussed in terms of the known error sources of
the two techniques. - 
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